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Abstract
Some simple (namely, single-channel) correlation functions involving an
arbitrary number of fields are computed by means of a direct application of the
residue calculus, through partial fraction expansions. Examples are presented
in minimal models and parafermionic conformal theories. A generic factorized
expression is deduced for the corresponding single-channel structure constants.

PACS numbers: 02.30.Tb, 02.30.Vv, 11.25.Hf

1. Introduction

1.1. Correlators, operator product expansions and Ward identities

The plain method for evaluating N -point correlation functions, given the OPEs (operator
product expansions) of the fields whose correlations are to be computed, amounts to substituting
the OPE of two fields in order to reduce the correlator to (N − 1)-point functions and iterating
this procedure until the result becomes expressed in terms of a three-point function. The latter
being known exactly up to structure constants, the correlator is then expressed in terms of
these constants. However, the reduction in the number of points has been traded for a new
complication: we then have to sum up the infinite series (i.e. conformal blocks) associated
with each OPE. In principle, these can be summed exactly only in simple cases. A sample
computation is presented in appendix A.

For the mere formulation of the model, the correlators that are particularly important are
those involving the symmetry generators, namely the generators of the extended conformal
algebra. Their relevance lies in that the internal coherence of the extended algebra boils down
to a precise statement concerning the correlators of the symmetry generators: all their four-
point functions must be associative. The associativity requirement is the condition that a
correlation function can be calculated in many different ways, in particular, by evaluating the
OPEs in different orders, without affecting the result. (This is the way the structure constants
are calculated.) But testing associativity calls for the exact form of these correlation functions.
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However, in this particular instance, the problem appears to be tractable. Indeed, the
evaluation of correlation functions involving extended conformal-algebra generators is usually
rather simple in that only the singular terms have to be considered. Take for instance a
correlation function involving the energy–momentum tensor T (z) and some primary fields∏N
j=1 φj (zj ). This is certainly relevant to the question of studying the associativity of a given

conformal algebra because the algebra generators other than T have to be Virasoro primary
fields. It is a very basic fact that in eliminating T (z) through OPE, one simply needs to take
into account the singular terms in the product of T (z)with all the other fields in the correlator:〈

T (z)

N∏
j=1

φj (zj )

〉
=

N∑
i=1

{
hi

(z− zi)2 +
∂zi

z− zi

} 〈 N∏
j=1

φj (zj )

〉
. (1.1)

In other words, in this special case we do not have to keep track of an infinite series. This is a
consequence of the conformal Ward identities—cf [1–3].

1.2. Correlators involving T as meromorphic functions

However, if we think about this result from the point of view of OPEs, it looks rather surprising
that by considering only the singular terms of the OPE of T with the other fields of the correlator
(and not the complete infinite OPE series) we can compute the correlation function exactly.
This has a natural complex-analysis explanation: the result simply corresponds to the partial
fraction expansion of the meromorphic function representing the correlation, viewed as a
function of one of its fields. For instance, the correlator in (1.1), considered as a function of z,
is a meromorphic function with double poles at the various zj (since the φj (zj ) are supposed
to be primary) with coefficients fixed by the OPE T (z)φj (zj ). In that case, the partial fraction
expansion is complete in that there is no additional analytic piece. Indeed, this meromorphic
function vanishes at infinity since T (z) ∼ z−4 as z→∞. Such a function is simply given by
the sum of the principal parts at the various poles.

Let us make the above statements more explicit. Recall that a meromorphic function with
vanishing analytic part can be written in a partial fraction as

F(z) =
N∑
j=1

nj∑
r=1

a
(j)
r

(z− zj )r (1.2)

where nj is the order of the pole at zj and the coefficients a(j)r are given by

a
(j)

nj−k = lim
z→zj

1

k!

∂k

∂zk
(z− zj )nj F (z). (1.3)

When F(z) is a correlation function, the various coefficients a(j)r are expressed in terms of
lower-order correlation functions. On the other hand, if the meromorphic function F(z) does
not vanish at infinity, an analytic function needs to be added to this sum of principal parts.
Suppose that F(z) behaves rather like F(z) ∼ zp as z→∞, with p integer. This signals the
presence of a pole of orderp at infinity so that the principal part at infinity (in which we include
a constant term) has to be taken into account. The expression of F(z) then becomes

F(z) =
N∑
j=1

nj∑
r=1

a
(j)
r

(z− zj )r +
p∑
k=1

a
(∞)
k zk. (1.4)

The last sum is the analytic part of F(z).
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It is then completely obvious that in the case (1.1), the principal part at zj is nothing but
the sum of the singular terms in the OPE T (z)φj (zj ). Indeed, viewing the correlator as a
function of z, we have〈

T (z)

N∏
j=1

φj (zj )

〉
=

N∑
i=1

(
a
(i)
2

(z− zi)2 +
a
(i)
1

(z− zi)

)
(1.5)

with

a
(i)
2 = lim

z→zi
(z− zi)2

〈
T (z)

N∏
j=1

φj (zj )

〉

= lim
z→zi

(z− zi)2
〈 i−1∏
j=1

φj (zj )

(
hiφi(zi)

(z− zi)2 +
∂zi φi(zi)

z− zi + · · ·
) N∏
j=i+1

φj (zj )

〉

= hi
〈 N∏
j=1

φj (zj )

〉
(1.6)

and

a
(i)
1 = lim

z→zi

∂

∂z
(z− zi)2

〈
T (z)

N∏
j=1

φj (zj )

〉

= lim
z→zi

∂

∂z

{〈
hi

N∏
j=1

φj (zj )

〉
+ (z− zi)∂i

〈 N∏
j=1

φj (zj )

〉
+ · · ·

}

= ∂i
〈 N∏
j=1

φj (zj )

〉
(1.7)

(the first term of the second line drops out because it is independent of z); this gives the rhs
of (1.1).

The above derivation of (1.1) makes clear the rather auxiliary aspect of the primary nature
of the fields inside the correlator. For instance, one could introduce quasi-primary fields, for
example T (z) itself. Regarding the following correlator as a function of ζ1 leads to [2]:〈 M∏
i=1

T (ζi)

N∏
j=1

φj (zj )

〉
=

M∑
i=2

c/2

(ζ1 − ζi)4
〈 M∏

k=2
k �=i

T (ζk)

N∏
j=1

φj (zj )

〉

+
M∑
i=2

(
2

(ζ1 − ζi)2 +
1

ζ1 − ζi
∂

∂ζi

)〈 M∏
k=2

T (ζk)

N∏
j=1

φj (zj )

〉

+
N∑
i=1

(
hi

(ζ1 − zi)2 +
1

ζ1 − zi
∂

∂zi

)〈 M∏
k=2

T (ζk)

N∏
j=1

φj (zj )

〉
. (1.8)

A manifestation of the associativity property is that the same expression for this correlator
follows by considering it as a meromorphic function of another variable ζi .

Even ‘less-primary’ fields are treated by the same method: only the singular terms of the
OPE with T (z) contribute.

1.3. Generalizing the class of correlators computable from partial fraction expansions

What is central in the previous computations of correlators involving T ? First, there is the fact
that the OPE of T with another field has only one channel, i.e. all those terms that appear in
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the OPE T (z)φ(w) belong to the conformal family of φ(w). This ensures that the different
powers of z − zj (for a given j ) all differ by integers. A second important point is that T is
local with respect to any other field in the theory, which implies that not only do the different
powers of z − zj differ by integers, but they are all integers themselves. In other words, the
OPE T (z)φ(w) is a genuine Laurent series.

Therefore, this computation method can be used for calculating the different four-point
functions for the extended-algebra generators when these generators Yi all have integer
dimensions. Note that in this case, the one-channel constraint is superfluous because all the
powers of z−w in the OPE Yi (z)Yj (w) ∈ ∑k[Yk(w)] have automatically integer dimension.
A well known example of this type is the WZW model, whose extended symmetry is an affine
Lie algebra, with generators J a satisfying the OPE J a × J b = I + J c.

But if this is to be used for the analysis of more general extended algebras, for instance
parafermionic models with fields having fractional dimension, one has to be able to tackle
situations where there are branching points, that is, when the powers of z − w are fractional
in the OPE Yi (z)Yj (w). The cure is quite simple: we just have to modify the correlation
function, which is viewed as a function of the first variable z1—the position of a given symmetry
generator, say Y(z1)—by multiplying it by appropriate powers of z1 −zj (zj being the position
of another field inside of the correlator) in order to transform it into a meromorphic function
of z1 [4]. In other words, to analyse the correlation 〈Y(z1) · · ·〉, we consider the intermediate
function

F(z1) =
(∏
j�2

(z1j )
dj

)
〈Y(z1) · · ·〉 (1.9)

for those values of di appropriate to make F(z1)meromorphic. The OPEs then fix the position
of the poles of this function together with their residues. This determines F(z1) and, thereby,
the correlation function under consideration. Notice however that in the present case the
principal part of F(z1) at zj is not given solely by the sum of the singular terms in z1 − zj :
for the subleading terms in the principal series, there are derivatives in the expression for
the constants a(j)nj−k in (1.3) and these derivatives do not select exclusively the corresponding

singular terms due to the presence of the prefactors
∏
i�2(z1i )

di on which the derivatives also
act.

As already pointed out, the presence or absence of a regular (analytic) part in the
expression of F(z1) is fixed by the behaviour of the field at position z1, as z1→∞, for example
Y(z1) ∼ z

−2hY
1 , together with the prefactor composed of the different fractional powers of

z1 − zj that have been introduced. A modification of the prefactor by an integer power of
z1j obviously affects the nature of the regular part of F(z1) but not the final expression of the
correlator.

By bringing out the conditions underlying the applicability of the residue method to
the computation of correlators involving T , we have identified at once two criteria: (1) the
single-channel requirement and (2) the locality condition. The simple trick just described for
transforming a function with branching singularities into a meromorphic function thus provides
a way of bypassing the apparent second limitation.

In relation to the single-channel requirement, we have already presented a situation in
which it can be relaxed, namely for correlators of symmetry generators all having integer
dimension. Phrased in more general terms, the one-channel condition is not mandatory when
the OPEs of the fields inside the correlators close in a set of fields which all have conformal
dimension that differs from each other by integers. But this is a rather special instance. In more
general circumstances, the single-channel requirement cannot be avoided. Notice however that
this is not as restricting as it looks at first sight. What is really needed is a not exactly a genuine



Single-channel correlators and residue calculus 10145

single-channel OPE but, rather, a correlation function that selects a single channel in each
intermediate OPE.

In the above considerations there is in addition an implicit third limitation, which is that
the field in terms of which the partial fraction is formulated has to be a symmetry generator.
But the complex analysis is blind to the subtle conformal nature of the field evaluated at z1. It
is clear that it can be any field, as long as (generically) the correlation function has effectively a
single channel. In particular, it can be applied to the calculation of special correlators involving
only primary fields. Examples of such functions containing only Virasoro or parafermionic
primary fields are presented below.

2. Correlators of Virasoro degenerate primary fields

We shall first consider the following correlation function of Virasoro degenerate primary fields:

〈φ12(z1) · · ·φ12(zn)φ1,n+1(zn+1)〉. (2.1)

Given the fusion rule [1]

φ12 × φ1r = φ1,r−1 + φ1,r+1 (2.2)

we see that the insertion of the field φ1,n+1 in the last position effectively selects a single
channel; i.e., a single term contributes from each OPE. This is most easily seen for the case
n = 2 corresponding to the three-point function: substituting φ12 × φ12 = φ11 + φ13 in the
correlator and using the orthogonality condition

〈φ1r (z1)φ1s(z2)〉 = δr,s (2.3)

it is clear that it is only the φ13 term that contributes.
Recall that φrs , with r, s integers, refers to a Virasoro primary field that contains a singular

descendant (hence the qualitative ‘degenerate’) at level rs and whose dimension hrs is linked
to the central charge via a parameter t as follows:

hrs(t) = 1

4
(r2 − 1)t +

1

4
(s2 − 1)

1

t
− 1

2
(rs − 1)

c(t) = 13 − 6

(
t +

1

t

)
.

(2.4)

It is convenient to set

a = 1

2t
. (2.5)

In this notation, the dimension h1n takes the form

h1n = 1
2 (n

2 − 1)a − 1
2 (n− 1) (2.6)

so that the power of (z− w) of the leading term of the family φ1m in the OPE of φ1r × φ1s is

h1r + h1s − h1m = 1
2 (r

2 + s2 −m2 − 1)a − 1
2 (r + s −m− 1). (2.7)

In order to lighten further the notation, we shall set

φ1,r+1 ≡ Pr (2.8)

and define the structure constants crs as follows:

Pr (z)Ps(w) ∼ crsPr+s + · · · . (2.9)

Therefore, in terms of the minimal-model structure constants, the crs are

crs = C(1,r+1),(1,s+1)
(1,r+s+1) = C(1,r+1),(1,s+1),(1,r+s+1) (2.10)
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the last expression being symmetric with respect to the interchange of any two pairs of the
three indices.

Let us evaluate the four-point function

〈φ12(z1)φ12(z2)φ12(z3)φ14(z4)〉 = 〈P1(z1)P1(z2)P1(z3)P3(z4)〉 (2.11)

by the residue method. The function

F(z1) = z−a12 z
−a
13 z

5a−1
14 〈P1(z1)P1(z2)P1(z3)P3(z4)〉 (2.12)

turns out to be an analytic function of z1 (there are no poles). Actually, it is simply a constant,
as the behaviour as z1→∞ indicates, i.e.

F(z1) ∼ z−a1 z
−a
1 z

5a−1
1

1

z3a−1
1

(z1→∞) (2.13)

where the last term is the contribution of the correlator per se, in which only P1(z1) contributes:
P1(z1) ∼ z

−2h12
1 . This constant can be evaluated in many different ways and in particular, in

the limit z1→z4,

lim
z1→z4

F(z1) = lim
z1→z4

z−a12 z
−a
13 z

5a−1
14

c11

z5a−1
14

〈P2(z2)P1(z3)P3(z4)〉

= lim
z1→z4

z−a12 z
−a
13 z

5a−1
14

c11

z5a−1
14

c12

z−a23 z
4a−1
24 z4a−1

34

= c11c12

z−a23 z
5a−1
24 z5a−1

34

. (2.14)

Therefore, we have

〈P1(z1)P1(z2)P1(z3)P3(z4)〉 = c11c12

z−a12 z
−a
13 z

−a
23 z

5a−1
14 z5a−1

24 z5a−1
34

. (2.15)

This computation can be easily generalized to the case where there is an arbitrary number
of P1 fields projected onto an appropriate Pn field enforcing the single-channel constraint:

〈P1(z1) · · · P1(zn)Pn(zn+1)〉 = c11c12 · · · c1,n−1

∏
1�i<j�n

1

z−aij

∏
1�!�n

1

z
(n+2)a−1
!,n+1

. (2.16)

It is not difficult to verify that this correlator is a solution of the φ12 singular-vector differential
equation. Having computed our correlator without resorting to this differential equation, one
could ask where the singular nature of φ12 enters, if it does at all. It is actually used right at
the beginning, in specifying the fusion rules.

Still using the residue method, we can derive the following other generalization of the
four-point function (2.15):

〈P1(z1)Pn(z2)Pn′(z3)Pn+n′+1(z4)〉
= c1,n+n′cn,n′

z−na12 z
−n′a
13 z

(3+n+n′)a−1
14 z−nn

′a
23 z

(n2+3n+nn′)a−n
24 z

(n′2+3n′+nn′)a−n′
34

. (2.17)

A different ordering in the evaluation of the constant representing the intermediate
meromorphic function forces the relation

c1,n+n′cn,n′ = c1,ncn+1,n′ . (2.18)

The solution of this recursion relation reads

cn,n′ = c1,1 · · · c1,n+n′−1

c1,1 · · · c1,n−1 c1,1 · · · c1,n′−1
(2.19)

which, as it should be, is symmetric in both indices.
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We now want to stress that the factorized expression (2.18) was actually coded in the
correlator (2.16). This correlator was computed by contracting all the P1 fields from left
to right. Equivalently, we could have stopped this process at the mth one and contract the
remaining P1 fields from right to left up to the m′th. This yields (with n = m +m′)

[c11c12 · · · c1,m−1][c11c12 · · · c1,m′−1]〈PmPm′Pm+m′ 〉
∼ [c11c12 · · · c1,m−1][c11c12 · · · c1,m′−1]cm,m′ . (2.20)

The comparison between the two results yields directly (2.19).
Equation (2.19) shows that all the constants cn,n′ can be calculated in terms of the c1,n

only1. In order to calculate the structure constants c1,n, we need to evaluate the four-point
function 〈P1PnP1Pn〉; but in this case, the two channels in the OPE P1 × Pn do contribute,
which invalidates the applicability of the residue method. This correlator can be evaluated by
using the singular-vector equations [1] or by using screening operators [5–7]. But this will
not be reconsidered here. Our main point was to unravel the factorization (2.19), as well as
illustrating the residue method.

We can similarly write down rather directly the expression for all correlators of the form

〈Pr1(z1)Pr2(z2) · · · Prn (zn)PR(zn+1)〉
= cs1,r2cs2,r3 · · · csn−1,rn

∏
1�i<j�n

1

z
−ri rj a
ij

∏
1�!�n

1

z
r![(R+2)a−1]
!,n+1

(2.21)

with si = ∑i
j=1 rj and

∑n
i=1 ri = R.

Still more generally, we can also use the residue method to evaluate the correlators

〈φ21(z1) · · ·φ21(zr−1)φ12(zr) · · ·φ12(zr+s−1)φrs(zr+s)〉 (2.22)

since they also involve a single channel. The corresponding structure constants satisfy

C(r,s),(r ′,s ′)
(r+r ′−1,s+s ′−1) = C(r,1),(r ′,1)(r+r ′−1,1) C(1,s),(1,s,)

(1,s+s−1) = crr ′css ′ . (2.23)

Are these results completely surprising? From the Coulomb-gas representation point
of view, these expressions are somewhat trivial: these are the very correlators that do not
require the insertion of even a single screening operator (and for this reason they have not been
considered in [5, 6]). A Coulomb-gas correlation function without screening is simply that of
a collection of vertex operators, the result of which is quite simple and well known (see, e.g.,
equation (9.9) of [3]). All the zij dependence of the correlators is recovered in this way, the
remaining factors being simply the structure constants.

However we stress that in our computation we do not require the free-field representation.
In this sense the present derivation is thus more fundamental, in spite of the fact that it is
applicable to a rather limited class of correlators. It also reveals a simple factorization of some
of the structure constants that may not have been obvious from other points of view, but whose
generality is by now quite transparent.

3. Correlators in parafermionic models

3.1. Reviewing the Zk parafermionic algebra

The Zk parafermionic conformal algebra [4, 8] (see also [9, 10], is generated by k conserved
holomorphic (and similar anti-holomorphic) parafermionic fields ψn, n = 0, 1, . . . , k − 1,

1 We stress that the cn,n′ form a particular class of structure constants, first in that they pertain to the restricted {φ1,r }
algebra and second because they are those in front of the ‘highest field’, i.e. the maximal value of m, in the OPE
Pr × Ps ∼ ∑

m Pm.
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with ψ0 = I and ψ†
n = ψk−n, with conformal dimension hψn satisfying hψn = hψk−n . The set

of conformal dimensions {hψn} is an input of a parafermionic theory and for the Zk model,
they read

hψn = n(k − n)
k

. (3.1)

The ψn are primary fields that form a closed algebra specified by the following OPEs:

ψn(z)ψn′(w) ∼ cn,n′

(z− w)2nn′/k ψn+n′(w) (n + n′ < k)

ψn(z) ψ
†
n′(w) ∼ cn,k−n′

(z− w)2min(n,n′)−2nn′/k ψk+n−n′(w) (n + n′ < k)

ψn(z) ψ
†
n(w) ∼ 1

(z− w)2n(k−n)/k
[
I + (z− w)2 2hψn

c
T (w) + · · ·

] (3.2)

where the central charge is fixed by associativity to be

c = 2(k − 1)

(k + 2)
. (3.3)

The remaining OPEs are obtained by conjugation and the condition

cn,n′ = ck−n,k−n′ (3.4)

which implies, in particular, that cn,k−n′ = ck−n,n′ . The constants cn,n′ are assumed to be real.
They are fixed by the associativity conditions:

c2
n,n′ = %(n + n′ + 1)%(k − n + 1)%(k − n′ + 1)

%(n + 1)%(n′ + 1)%(k − n− n′ + 1)%(k + 1)
(n + n′ < k). (3.5)

Note that this yields cn,k−n = 1. They satisfy

cn,n′ = cn,k−n−n′ = cn′,k−n−n′ (3.6)

which reflects the symmetry of the three-point function:

〈ψn(z1)ψn′(z2)ψ
†
n+n′(z3)〉 = Cn, n′, k−n−n′

z
2nn′/k
12 z

2n′−2n′(n+n′)/k
23 z

2n−2n(n+n′)/k
13

. (3.7)

3.2. Zk parafermionic correlators and their structure constants

As a simple illustrative example of the application of the residue method to a parafermionic
correlator, let us first rederive the well known expression for the three-point correlation function

〈ψ1(z1)ψ1(z2)ψ
†
2 (z3)〉. (3.8)

Given the structure of the OPEs, we know that the function

F(z1) = z2/k
12 z

−4/k
13 〈ψ1(z1)ψ1(z2)ψ

†
2 (z3)〉 (3.9)

is a meromorphic function of z1 with a double pole at z3 and no regular terms. Therefore, this
function has to be of the form

F(z1) = a2

z2
13

+
a1

z13
. (3.10)

The first coefficient is

a2 = lim
z1→z3

z2
13z

2/k
12 z

−4/k
13 〈ψ1(z1)ψ1(z2)ψ

†
2 (z3)〉. (3.11)



Single-channel correlators and residue calculus 10149

Since we shall be interested also in the second-order term, we shall need to consider also the
subleading contribution in the limiting value of the correlation function. Recall that in the
OPE of φa and φb, the first two contributing terms in the conformal family of φc are

φa(z)φb(w) ∼ Cabc

(z− w)ha+hb−hc

[
φc(w) +

(ha − hb + hc)

2hc
(z− w) ∂φc(w) + · · ·

]
. (3.12)

In the present case, we need

ψ1(z1)ψ
†
2 (z3) ∼ c1,1

z
2−4/k
13

[
ψ

†
1 (z3) +

z13

k − 1
∂ψ

†
1 (z3) + · · ·

]
. (3.13)

Therefore

lim
z1→z3

〈ψ1(z1)ψ1(z2)ψ
†
2 (z3)〉 = lim

z1→z3

c1,1(−1)−2/k

z
2−4/k
13 z

2−2/k
23

[
1 +

2

k

z13

z23
+ · · ·

]
. (3.14)

Only the leading term contributes to the first coefficient, which is thus

a2 = c1,1

z
2−4/k
23

. (3.15)

The other coefficient is given by

a1 = lim
z1→z3

∂

∂z1

{
z2

13z
2/k
12 z

−4/k
13 〈ψ1(z1)ψ1(z2)ψ

†
2 (z3)〉

}
. (3.16)

It is simple to check that it is equal to zero. F(z1) has thus a single term; the expression of the
correlation function under consideration is then

〈ψ1(z1)ψ1(z2)ψ
†
2 (z3)〉 = c1,1

z
2/k
12 z

2−4/k
13 z

2−4/k
23

. (3.17)

This is the correct three-point function.
This computation can easily be generalized to the case where there is an arbitrary number

of ψ1 factors:

〈ψ1(z1) · · ·ψ1(zn)ψ
†
n(zn+1)〉 =

∏
1�i<j�n

c1,i

z
2/k
ij

∏
1�!�n

1

z
2−2n/k
!,n+1

. (3.18)

Proceeding in a similar way, we can also compute the following correlator:

〈ψ1(z1)ψn(z2)ψn′(z3)ψ
†
n+n′+1(z4)〉

= cn,n′c1,n+n′

z
2n/k
12 z

2n′/k
13 z

2nn′/k
23

1

z
2−2(n+n′+1)/k
14 z

2n(1−(n+n′+1)/k)
24 z

2n′(1−(n+n′+1)/k)
34

. (3.19)

We now use this last expression to extract a first result on the structure constants, by comparing
the leading contribution of the limit z1→z2 of the correlator:

lim
z1→z2

〈ψ1(z1)ψn(z2)ψn′(z3)ψ
†
n+n′+1(z4)〉 � c1,n

z
2n/k
12

〈ψn+1(z2)ψn′(z3)ψ
†
n+n′+1(z4)〉

� c1,ncn+1,n′

z
2n/k
12 z

2n′(n+1)/k
23 z

2(n+1)(1−(n+n′+1)/k)
24 z

2n′(1−(n+n′+1)/k)
34

(3.20)

with the same limit calculated directly from (3.19). This gives

c1,ncn+1,n′ = cn,n′c1,n+n′ (3.21)
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precisely the same relation as found for the minimal models and thus whose solution is again
exactly of the form (2.19). The observation of this factorization seems to have first been made
in [11]. As already hinted at, it is typical of monomial (i.e. single-term) correlators.

In order to get the complete expression for the coefficient cn,n′ , we simply need to evaluate
c1,n. This can also be done by the residue method2. For this we need to consider the correlation
function

G′ = 〈ψ1(z1)ψn(z2)ψ
†
1 (z3)ψ

†
n(z4)〉 (3.22)

with n > 1. As a function of z1,

F ′(z1) = z2n/k
12 z

−2/k
13 z

−2n/k
14 〈ψ1(z1)ψn(z2)ψ

†
1 (z3)ψ

†
n(z4)〉 (3.23)

is a meromorphic function of z1 with double poles at z3 and z4 and vanishing at infinity, so that

F ′(z1) = a2

z2
13

+
a1

z13
+
b2

z2
14

+
b1

z14
. (3.24)

A straightforward computation yields

a2 = z
2n/k
23

z
2n/k
34 z

2n−2n2/k

24

a1 = −a2
2n

k

z24

z23z34

b2 = c2
1,n−1

z
2−2n/k
23 z

2n/k
34 z

2(n−1)−2n2/k

24

b1 = b2
2

(k − n + 1)

z23

z24z34

(3.25)

from which we obtain

G′ =
(
z14z23

z12z34

)2n/k 1

z
2−2/k
13 z

2n−2n2/k

24

{
1 − 2n

k

z13z24

z23z34
+ c2

1,n−1

z2
13z

2
24

z2
23z

2
14

(
1 +

2

k − n + 1

z14z23

z24z34

)}
.

(3.26)

To extract the value of c1,n−1, we compare the expression of the correlator evaluated directly
in the limit z12→0 and z34→0, which yields

lim
z1→z2
z3→z4

〈ψ1(z1)ψn(z2)ψ
†
1 (z3)ψ

†
n(z4)〉 � c2

1,n

z
2n/k
12 z

2n/k
34 z

2n−2n2/k

24

(3.27)

with G′ given in (3.26), evaluated in the same limit. One finds that the leading terms do not
match,G′ being more singular. Hence, the leading coefficient inG′ must cancel, which forces

c2
1,n−1 = n(k − n + 1)

k
. (3.28)

The substitution of this result into (2.19) leads to (3.5). Note, on the other hand, that the central
charge is fixed by the subleading term of the correlator 〈ψ1(z1)ψ1(z2)ψ

†
1 (z3)ψ

†
1 (z4)〉.

3.3. Some Zk spin-field correlators and a relation between their structure constants

A similar analysis can be applied to spin-field correlation functions. Here we use the notation
σi for the holomorphic part of the ith spin field in the parafermionic theory, with σ0 = σk = I .
The fusion rules are

σi × σj = σi+j + · · · (3.29)

2 That was not the case for Virasoro primary-field correlators since not all P1 correlators have a single channel. The
difference here is that the ψn have a single OPE channel.
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where the dots stand for fields that are not parafermionic primary in the sense that their charge
is not linked to their dimension as for the spin field, for which they are respectively

h! = !(k − !)
2k(k + 2)

and q! = !. (3.30)

These fusion rules are obtained from the coset realization ŝu(2)k/û(1) [9]. Let c̃ij be the
structure constant in front of the term which is given explicitly in (3.29), namely

〈σn(z1)σn′(z2)σ
†
n+n′(z3)〉 = c̃ij

znn
′b

12 z
bn(k−n−n′)
13 z

bn′(k−n−n′)
23

(3.31)

where

b = 1

k(k + 2)
. (3.32)

For the general correlator of n σ1(z1) fields with σ †
n , the residue method leads to the

following simple expression:

〈σ1(z1) · · · σ1(zn)σ
†
n (zn+1)〉 = c̃11c̃12 · · · c̃1,n−1

∏
1�i<j�n

1

zbij

∏
1�i�n

1

z
(k−n)b
i,n+1

. (3.33)

This again leads to the relation (2.19)—in tilde version—for the structure constants.
Obviously, this relation could be derived as previously, by considering the correlator
〈σ1σnσn′σ

†
n+n′+1〉, which leads to (2.18), whose solution is the tilde version of (2.19). It is

simple to check that the explicit expression found in [4] for the c̃n,n′

c̃2
n,n′ = γ (1)γ (n + n′ + 1)γ (k − n + 1)γ (k − n′ + 1)

γ (n + 1)γ (n′ + 1)γ (k − n− n′ + 1)γ (k + 1)
(3.34)

with

γ (x) = %
( x

k + 2

)
(3.35)

indeed satisfies the factorization3 (2.19). This is at the roots of the curious similarity noted
in [4] between the parafermionic structure constants and the spin-field ones.

3.4. A Z
(2)
k correlator

As already pointed out, in a parafermionic model, the conformal dimension of the parafermionic
fields is an input. It is however constrained by the Zk invariance itself, which requireshψn = hψ†

n

and the monodromy invariance of the correlators. These constraints are satisfied for

h
(β)

ψn
= βn(k − n)

k
(3.36)

for any positive integer β. However, the underlying associativity conditions have to be checked
anew for each value of β. The defining OPEs are given by (3.2) but with (z − w) replaced
by (z − w)β and cn,n′ → c

(β)

n,n′ . In the following, we denote the corresponding parafermionic

model as Z
(β)

k , with Zk ≡ Z
(1)
k . The results of the associativity conditions for the case β = 2

are presented in [4] (cf their appendix A) and the special Z
(2)
3 model is studied in [12]. (We

shall report elsewhere on a detailed analysis of the Z
(2)
k models.)

3 Note that the factorization by itself cannot lead us to the above expression: the exact value of c̃1,n is required and it
can be obtained through the calculation of the correlator 〈σ1σnσ

†
1 σ

†
n 〉. But this cannot be evaluated by means of the

residue method because there are two contributing channels. In [4] it was evaluated through the coset representation.
The coset approach is usually not a convenient way of computing correlation functions—(cf [3, chapter 18]); however,
the simplicity of the present coset, namely ŝu(2)k/û(1), allows for a direct factorization of the correlators into a WZW
piece and a free boson one. The correlator could also be calculated from the parafermionic singular conditions. This
calculation will be reported elsewhere.



10152 P Jacob and P Mathieu

Let us consider a sample correlator of the Z
(2)
k model, namely 〈ψ1ψ1ψ

†
1ψ

†
1 〉, from which

we construct the meromorphic function

F̃ (z1) = z4/k
12 z

−4/k
13 z

−4/k
14 〈ψ1(z1)ψ1(z2)ψ

†
1 (z3)ψ

†
1 (z4)〉. (3.37)

It has poles of order four at z3 and z4 and behaves as 1/z4
1 as z1→∞, meaning that there is

no analytic piece. The computation of the two principal parts requires thus the knowledge of
the first three subleading terms in the OPE ψ1(z)ψ

†
1 (w). That makes the computation much

more involved than in the β = 1 case. However, there is a simple trick that allows us to avoid
going so deeply inside the conformal block. Since F ∼ 1/z4

1, we can reduce the order of the
two poles by two, at the price of adding a constant term, by multiplying F̃ (z1) by z2

13z
2
14. The

transformed meromorphic function reads thus

F̃ ′(z1) = z2
13z

2
14F̃ (z1) = a2

z2
13

+
a1

z13
+
b2

z2
14

+
b1

z14
+ c0. (3.38)

For this computation we require the knowledge of only the first subleading term in the OPE
ψ1(z)ψ

†
1 (w). A direct but rather long calculation gives the following expression for the

correlator:
1

(z12z34)4/k(z13z14z23z24)2−4/k

{(
c
(2)
11

)2
+
z2

34

z23z24
− 4

k

z2
12z

2
34

z14z13z23z24

+
z34z24

z2
14z

2
23

(z12z14 − z13z24) +
z34z23

z2
24z

2
13

(z14z23 − z12z13)

}
. (3.39)

If we compare this expression in the limit z1→z3 with the correlator evaluated directly in this
same limit, we find that for c expressed in terms of a parameter λ as

c = 4(k − 1)λ(k + λ− 1)

(k + 2λ)(k + 2λ− 2)
(3.40)

the structure constant c(2)11 becomes(
c
(2)
11

)2 = 2(k − 1)(λ + 1)(k + λ− 2)

kλ(k + λ− 1)
(3.41)

in agreement with [12]. To check that the Z
(2)
k central charge is unconstrained, we need to

compare the subleading terms.
Here again the constants c(2)n,n′ have the factorization property (2.19), so that all constants

can be expressed in terms of c(2)1,n, whose determination requires the evaluation of 〈ψ1ψnψ
†
1ψ

†
n〉.

Again the calculation can be reduced to the evaluation of poles of order two. The expression
of all the structure constants c(2)n,n′ are given in [12]. Curiously, c(2)n,n′ has another factorization,
namely as

c
(2)
n,n′ = cn,n′dn,n′(λ) with dn,n′(1) = cn,n′ ≡ c(1)n,n′ (3.42)

whose origin appears somewhat mysterious.
The structure constants for the models Z

(β>2)
k can be computed in the same manner. Yet

there exist no results concerning these theories.
Coming back to methodological aspects, with the computation presented in this subsection,

we wanted to emphasize that the evaluation of the principal part can be substantially simplified
by an appropriate modification of the integer powers of the prefactor multiplying the correlator.
Here, poles of order four have been transformed into poles of order two. This is not a purely
technical issue. The determination of higher subleading terms in the OPE ψ† requires the
knowledge of the chiral algebra underlying the Z

(2)
k models. More precisely, the required

information can be extracted from various associativity constraints but it is clear that knowing
at least the gross features of the underlying chiral algebra is useful. For the Z

(1)
k model, it is

theWAk−1 algebra. However, the chiral algebra of the Z
(2)
k models is not known.
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4. Conclusion

We have thus exposed, in its full generality, a method for calculating special CFT correlators
based an a direct application of the residue calculus. Let us first summarize the method and
restate the limits of its applicability.

We consider the correlator 〈A(z)∏i Bi(zi)〉 as a function of z. The first step is to transform
it into a meromorphic function of z. This is already guaranteed if the OPEs A(z)Bi(zi) are
Laurent series, which requires that the conformal dimensions of all the fields that appear in
the singular terms of the OPE A(z)Bi(zi), as well as A and Bi , differ by integers. This
situation pertains to correlators of chiral-algebra generators (in which case all the fields have
integer dimension). However, when A is not a symmetry generator, the above condition is
rarely verified. Generically, the OPE A(z)Bi(zi) contains a number of channels associated
with primary fields whose dimensions do not differ by integers. In such a case, one can still
construct a meromorphic function if either there is a single channel, or more generally, if a
single channel, say Ci , contributes to the correlation function. This, however, does not ensure
that hA + hBi − hCi is integer, i.e. that the OPE projected onto the Ci channel is a Laurent
series. But the cure at this point is simple: one multiplies the OPE by a fractional power of
z − zi suitably chosen to eliminate the algebraic singularity, leaving thus pole-type singular
terms. In other words, when the effective single-channel requirement is satisfied, the correlator
can be transformed into a meromorphic function of z by multiplying it by an appropriate
factor

∏
i (z − zi)di . This meromorphic function is then expanded in partial fractions, that is,

as the sum of the principal parts at the different zi , including possibly the principal part at
infinity.

We stress that in the context of the partial fraction expansion method, the
associativity requirement is equivalent to the statement that the many different ways of
transforming a correlator into a meromorphic function yield exactly the same result for that
correlator.

This method is certainly not new and we try in appendix B to trace it back in
the literature. However, its explicit spelling out as well as the identification of its
inherent limitations appear to be new. The method has been illustrated here with various
examples, including some correlators that do not involve conserved currents. As a practical
application, we have worked out a detailed derivation of the parafermionic structure
constants.
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Appendix A. A three-point function computed from the infinite series

In this appendix, we consider the calculation of the three-point function 〈T (z1)T (z2)T (z3)〉
using the brute force infinite-series method, where one OPE is replaced by its full infinite
series, and show how this series can be summed exactly to reproduce the simple three-point
function expression.
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The long-road computation will be compared to the few-step computation that results
from the application of the conformal Ward identity:

〈T (z1)T (z2)T (z3)〉 = 〈T (z1)T (z2)T (z3)〉 + 〈T (z2) T (z1)T (z3)〉
=
〈(
c/2

z4
12

+
2T (z2)

z2
12

+
∂T (z2)

z12

)
T (z3)

〉
+

〈
T (z2)

(
c/2

z4
13

+
2T (z3)

z2
13

+
∂T (z3)

z13

)〉
= c

z2
12z

4
23

− 2c

z12z
5
23

+
c

z2
13z

4
23

+
2c

z13z
5
23

= c

z2
12z

2
13z

2
23

. (A.1)

Let us now turn to the expression that results from the replacement of the OPE T (z1)T (z2)

by its infinite series:

T (z1)T (z2) = T (z1)T (z2) + (T (z1)T (z2))

=
(
c/2

z4
12

+
2T (z2)

z2
12

+
∂T (z2)

z12

)
+

∞∑
n=0

zn21

n!
(T T (n))(z1) (A.2)

where T (n) = ∂nT and (T (z1)T (z2)) stands for the normal ordering of the product T (z1)T (z2),
defined as

(AB)(z) = 1

2π i

∮
dx

x − zA(x)B(z). (A.3)

The substitution of (A.2) into the three-point function yields

〈T (z1)T (z2)T (z3)〉 = c

z2
12z

4
23

− 2c

z12z
5
23

+
∞∑
n=0

zn21

n!
〈(T T (n))(z1)T (z3)〉. (A.4)

In the last three-point function, we have to find the term proportional to cz−6−n
13 , which is the

only contributing one; it is obtained by standard methods (see, e.g., [3]): in

T (z3) (T T
(n))(z1) = 1

2π i

∮
dx

x − z1

{(
T (z3)T (x)

)
T (n)(z1) + T (x)

(
T (z3)T

(n)(z1)
)}

(A.5)

only the first piece contributes to cz−6−n
31 and its different contributions add up to (6 + n)(3 +

n)!/12. Therefore, we have

〈(T (z1)T (z2))T (z3)〉 = c

12

∞∑
n=0

(3 + n)!(6 + n)

n!

zn12

zn+6
13

. (A.6)

The infinite series can be summed as follows:
∞∑
n=0

(3 + n)(2 + n)(1 + n)(6 + n)
zn12

zn13

= 1

z5
12

∂2 z
6
12 ∂

3
2

∞∑
n=0

zn+3
12

zn13

= 1

z5
12

∂2 z
6
12 ∂

3
2

(
z3

12

1 − z12/z13

)
= 1

z5
12

∂2 z
6
12 ∂

3
2

(
z3

12z13

z23

)
= 1

z5
12

∂2 z
6
12

(−6z3
13

z4
23

)
= 36z3

13

z4
23

+
24z3

13z12

z5
23

(A.7)

so that

〈(T (z1)T (z2))T (z3)〉 = c

z2
13z

5
23

(3z23 + 2z12) = c

z2
13z

5
23

(z23 + 2z13). (A.8)

The substitution of this expression into (A.4) reproduces (A.1).
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Appendix B. Correlators as meromorphic functions through the literature

As applied to correlators containing symmetry generators, the residue method could be traced
back to the pioneer work of Belavin, Polyakov and Zamolodchikov [1]. These authors explicitly
consider the correlator 〈T (z)∏i φi(zi)〉 as a meromorphic function of z with poles at zi
whose residues are fixed by the conformal properties of the field φi(zi) (cf the discussion
after their equations (2.8) and (3.3)). The method is also used in [2]. In this seminal
paper, Zamoldchikov has launched the exploration of extended conformal algebras through the
study of the associativity conditions of a number of cases containing a single extra symmetry
generator. Correlation functions are computed by considering only the singular terms in the
OPEs. There is again an explicit reference to the residue calculus (cf equations (2.1)–(2.4))
that suggests an underlying complex-analysis interpretation of the exposed computations. But
note that such an approach is not mandatory since the calculation method could be justified by
means of the Ward identities associated with these extra conserved currents.

Meromorphicity is the central theme of Goddard’s proposed formalization of conformal
field theory [13]. However, the meromorphic point of view here is not implemented at the level
of computing correlation functions. In this context, meromorphicity is used to establish locality,
which in turn becomes the corner-stone property for the construction of the conformal field
theory. This formal procedure has been much developed in a sequel work with Gaberdiel [14].
Here the emphasis is placed on the reconstruction of the whole theory out of meromorphic
amplitudes, via an approach inspired by the early works in dual models where the space of
states was originally built out of the conjectured dual amplitudes. In this very paper however,
the residue method is explicitly invoked for the calculation of some correlators involving
symmetry generators. In that regard, they present some results of Frenkel and Zhu [15], who
have devised a nice combinatorial method for handling such correlators (involving an arbitrary
number of either T factors or affine Lie algebra generators—summarized in sections 5(b)
and 5(c) of [14]). But again, the residue method is not systematized and its applications are
restricted to the elimination of conserved currents in correlation functions.

It is in the context of a non-meromorphic theory that the partial fraction expansion
technique has been mentioned in the most explicit way, namely as a natural tool for evaluating
the parafermionic correlator 〈ψ1 · · ·ψ1ψ

†
1 · · ·ψ†

1 〉 [4] (cf the discussion between equations (3.9)
and (3.12)). In this paper, the authors also give the value of the parafermionic structure
constants. Even though there are no indications concerning the way these have been computed,
it is natural to guess that their calculations have been done roughly along the lines presented
here.

A variant of the partial fraction expansion method has been used explicitly in [11] to work
out in detail the associativity conditions of the Z

(2) models (cf their section 3B). The approach
used there is superficially a little more complicated that the one presented here in that the
four-point correlation functions are transformed into meromorphic functions (actually, into
polynomials) of the cross ratio instead of functions of the position of one field. This procedure
prevents an immediate generalization to higher-point functions.

As applied to correlators that do not contain symmetry generators, we found afterwards
a single reference to the residue method: this is in appendix E of [1] (cf equations (E.14)–
(E.17)). It is used there to calculate the Ising correlator 〈ψ(z)σ (z1) · · ·µ(z2M)〉 where ψ is
the Ising fermion and σ and µ are respectively the spin and disorder fields. The correlator is
transformed into a meromorphic function of z as follows:

F(z) =
( 2M∏
i=1

(z− zi)1/2
)

〈ψ(z)σ (z1) · · ·µ(z2M〉. (B.1)
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Actually, all singularities in z are removed by this transformation since

ψ(z)σ (w) ∼ µ(w)

(z− w)1/2 ψ(z)µ(w) ∼ σ(w)

(z− w)1/2 . (B.2)

Observe that these OPEs have a single channel. F(z) is thus an analytic function. The form of
this analytic function is determined by its behaviour at infinity. Since F(z) ∼ zM−1 as z→∞,
it is necessarily a polynomial of orderM − 1, which can be written as

F(z) =
M−1∑
k=1

(z− z2M)
kgk(zi) (B.3)

(disregarding the dependence upon the anti-holomorphic variables)4. The coefficients gk are
determined by enforcing the correlator to be a solution of the singular-vector differential
equation of the free fermion (= φ21). Quite interestingly, the coefficient g0 gives the value of
the correlation function without the fermion.

More recently, Dotsenko [16] has devised a nice way of handling the parafermionic
computations by a method which is close in spirit to the computation of [1] just described,
hence to the partial fraction expansion. Applied to four-point functions with three points fixed
at the special values 0, 1, ∞, the idea is to factor out the branching or pole singularities of
the resulting z function and then determine the remaining polynomial in z that completes the
correlator by considering successively the correlator in the limits where z approaches the three
fixed points. A detailed application of this method is presented in the following appendix.

Appendix C. The Dotsenko method to test associativity

We shall illustrate the method initiated by Dotsenko by reconsidering the Zk parafermionic
correlator 〈ψ1(z1)ψn(z2)ψ

†
1 (z3)ψ

†
n(z4)〉. We fix three points at the standard values 0, 1 and ∞

and use the following convention for a ‘prime correlator’:

〈XA(∞)〉′ ≡ lim
zn→∞ z

2hA
n 〈XA(zn)〉. (C.1)

In particular, we have

〈ψn(z)ψ†
n(∞)〉′ = 1 〈ψn(z)ψn(1)ψ†

n+n′(∞)〉′ = cn,n′

(z− 1)2nn′/k . (C.2)

We consider thus 〈ψ1(0)ψn(z)ψ
†
1 (1)ψ

†
n(∞)〉′. Regarded as a function of z, this has singularities

at zero and unity, that is

G(z) ≡ 〈ψ1(0)ψn(z)ψ
†
1 (1)ψ

†
n(∞)〉′ = Pn(z)

z2n/k(z− 1)2−2n/k
(C.3)

(we do not care about the phases which all cancel at the end). Pn is a polynomial of order n.
In other words, by multiplying the correlator by the prefactor z2n/k(z−1)2−2n/k , we transform
it into a meromorphic function, which turns out to be analytic.

The order of Pn is fixed by considering the limit where z→∞, where we readily see that
G(∞) = 1, i.e.

lim
z→∞ G ∼ lim

z→∞〈ψ1(0)ψ
†
1 (1)〉〈ψn(z)ψ†

n(∞)〉′ = 1. (C.4)

4 The choice of the expansion variable, here z−z2M , is conventional; another zj could have be chosen instead of z2M
and the power series could also have been written in powers of z simply. Writing the expansion in terms of a difference
between two variables has the advantage of taking care of translation invariance. Note that there is a misprint on the
value of the upper limit of the sum in (E.16) of [1].
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This implies that n = 2 and, in addition, that the coefficient of the term z2 is unity, that is

P2(z) = a0 + a1z + z2. (C.5)

Thus, in order to completely determine the correlator, we only have to fix these two constants.
Consider first the limit where z→0, keeping track of the first subleading term. The

correlator G(z) becomes then

lim
z→0

G(z) = c1,n

z2n/k
〈ψn+1(z)ψ

†
1 (1)ψ

†
n(∞)〉′ −

z

n + 1

c1,n

z2n/k
〈∂ψn+1(z)ψ

†
1 (1)ψ

†
n(∞)〉′

= c2
1,n

z2n/k(z− 1)2−2(n+1)/k

{
1 +

2(k − n− 1)z

k(n + 1)(z− 1)

}
� c2

1,n

z2n/k

{
1 +

2k(k − n− 1)z

k(n + 1)

}
. (C.6)

This is to be compared with the expansion of the rhs of (C.3):

lim
z→0

{
a0 + a1z + z2

z2n/k(z− 1)2−2n/k

}
� 1

z2n/k

[
a0 + z

(
a1 + a0

2(k − n)
k

)]
. (C.7)

This yields

a0 = c2
1,n a1 = − 2a0

n + 1
. (C.8)

Next we consider the limit z→1. Here it will suffice to keep only the leading term. We
have thus

lim
z→1

G(z) � c1,n−1

(z− 1)2−2n/k
〈ψ1(0)ψ

†
k−1(1)ψ

†
n(∞)〉′

� c2
1,n−1

(z− 1)2−2n/k
(C.9)

which is to be compared with

lim
z→1

{
a0 + a1z + z2

z2n/k(z− 1)2−2n/k

}
� a0 + a1 + 1

(z− 1)2−2n/k
. (C.10)

That forces

a0 + a1 + 1 = c2
1,n−1 (C.11)

which together with (C.8) yields the recursion relation

c2
1,n−1 = c2

1,n

(
n− 1

n + 1

)
+ 1. (C.12)

This relation can be solved without knowing the explicit value of c11 but simply by enforcing
the condition

c1,n = c1,k−n−1. (C.13)

This readily implies

c2
1,k−n = c2

1,k−n−1

(
n− 1

n + 1

)
+ 1. (C.14)

On the other hand, replacing n by k − n in (C.10) yields

c2
1,k−n−1 = c2

1,k−n

(
k − n + 1

k − n− 1

)
+ 1. (C.15)
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Eliminating c2
1,k−n from the last two equations lead to an algebraic relation for c2

1,k−n−1 which
gives

c2
1,k−n−1 = c2

1,n = (n + 1)(k − n)
k

(C.16)

and we recover the expression of c1,n obtained previously in (3.28).
At first sight, it seems that the applicability of this method depends critically upon the

fact that the field evaluated at z is the conjugate of the one at infinity. In that case, the other
two fields are conjugate to each other, which ensures that the fractional powers of z cancel
in the denominator as z→∞. That certainly ensures the polynomial character of Pn as in
the large-z behaviour ψn(z) is simply projected onto ψ†

n(∞) and 〈ψn(z)ψ†
n(∞)〉′ = 1. But

consider instead the correlator

〈ψ1(0)ψn(z)ψ
†
n(1)ψ

†
1 (∞)〉′ = Q(z)

z2n/k(z− 1)2n−2n2/k
. (C.17)

It is not clear at once that Q(z) is polynomial here. The point, however, is that the large-z
limit of 〈A(0)B(z)C(1)D(∞)〉′ is actually given by zhB+hD−hE/z2hB , where E is the single
contributing field appearing in the OPE of B and D. Indeed, by considering at first the limit
z4→∞, we wash out the contribution zhB+hD−hE

24 that needs to be reinserted at this point in
order to get the right large-z behaviour. The term z−2hB simply corresponds to the large-z
behaviour of the B field. Returning to our problem, we need to compare the large-z limit of
the rhs of (C.17) with z2−2n+2n2/k−2n/k ∼ z2, which shows thatQ(z) is indeed a polynomial of
degree two.

It should be clear from this example that the Dotsenko method has the same intrinsic
limitations as the partial fraction expansion described in the main part of the paper. In particular,
it generically applies to correlators that have a single contributing channel.
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